Частное общеобразовательное учреждение средняя общеобразовательная школа «Общеобразовательный центр «Школа»

РАССМОТРЕНА на заседании МО протокол № 1 от 29.08. 2022 г. УТВЕРЖДЕНА Приказом директора ЧОУ СОШ «Общеобразовательный центр «Школа» №130 – од от 31-08-2022

документов

кола /Сидорова С.И./

Программа курса внеурочной деятельности «Робототехника»

Направление: занятия, направленные на удовлетворение профориентационных интересов и потребностей обучающихся

Возраст: 11 лет

Количество часов в неделю: 1 час

Срок реализации: 1 год

Составитель: Чирков В.А.

г. Тольятти 2022 - 2023

Пояснительная записка

Основным содержанием данного курса являются постепенное усложнение занятий от технического моделирования до сборки и программирования роботов с использованием материалов книги С.А. Филиппова «Робототехника для детей и родителей» на основе требований федерального государственного образовательного стандарта основного общего образования (Приказ Минпросвещения России от 31.05.2021 г. № 287) к результатам освоения основной образовательной программы основного общего образования по информатике.

Актуальность курса заключается в том, что он направлен на формирование творческой личности живущей в современном мире. Технологические наборы LEGO MINDSTORMS EV3 ориентированы на изучение основных физических принципов и базовых технических решений, лежащих в основе всех современных конструкций и устройств.

Ha уроках используются конструктор «Базовый набор» и «Ресурсный набор» серии LEGO MINDSTORMS EV3 с программным обеспечением и визуальной средой программирования.

Используя персональный компьютер, либо нетбук или ноутбук с ПО EV3, LEGО-элементы из конструктора ученики могут конструировать управляемые модели роботов. Загружая управляющую программу в специальный LEGO-компьютер EV3 и присоединяя его к модели робота, робот функционирует автономно. EV3 работает независимо от настольного компьютера, на котором была написана управляющая программа; получая информацию от различных датчиков и обрабатывая ее, он управляет работой моторов.

Итоги изученных тем подводятся созданием учениками собственных автоматизированных моделей, с написанием программ, используемых в своих проектах, и защитой этих проектов.

Цель:

• Научить использовать средства информационных технологий, чтобы проводить исследования и решать задачи в межпредметной деятельности.

Задачи:

- Знакомство со средой программирования;
- Усвоение основ программирования, получить умения составления алгоритмов;
- Умение использовать системы регистрации сигналов датчиков, понимание принципов обратной связи;
 - Проектирование роботов и программирование их действий;
- Через создание собственных проектов прослеживать пользу применения роботов в реальной жизни;
 - Расширение области знаний о профессиях;
 - Умение учеников работать в группах.

Содержание курса. 34 часа (1 час в неделю)

Тема 1. Введение, 3 часа

Конструктор Mindstorms EV3. Знакомство с набором, изучение его деталей. Получение представлений о микропроцессорном блоке EV3, являющимся мозгом конструктора LEGO Mindstorms EV3. Подготовка конструктора и EV3 к дальнейшей работе.

Тема 2. Конструирование, 8 часов

Знакомство с электронными компонентами и их использование:

Модуль EV3 с аккумуляторным блоком; датчики: ультразвуковой (датчик расстояния), касания, звука - микрофон, освещенности; соединительные кабели разной длины для подключения датчиков и сервоприводов к EV3 и USB - кабели для подключения EV3 к компьютеру.

Тема 3. Управление, 6 часов

Составление программ передвижения робота вперед и назад, который имеет мотор, способный изменять вращение оси машины. Робот имеет правый и левый моторы, подключенные к портам В и С. Сборка и программирование робота Mindstorms EV3, который должен двигаться вперед и поворачивать под прямым углом направо. Определение общих для всех датчиков параметров, которые надо проверить перед работой и настроить по заданным параметрам.

Тема 4. Проектно-конструкторская деятельность, 15 часов

Работа в Интернете. Поиск информации о Лего-соревнованиях, описаниях моделей, технологии сборки и программирования Лего-роботов. Сборка своих моделей. Анализ умений программирования робота. Подведение итогов курса – проведение соревнований (турниров), учебных исследовательских конференций.

Тема 5 Свободное моделирование, 2 часа

В процессе преподавания курса используются разнообразные формы и форматы обучения:

- традиционный урок (коллективная и групповая формы работы).
- смешанное обучение;
- практикумы.

Планируемые образовательные результаты

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты имеют направленность на решение задач воспитания, развития и социализации обучающихся средствами предмета.

Патриотическое воспитание:

ценностное отношение к отечественному культурному, историческому и научному наследию; заинтересованность в научных знаниях о цифровой трансформации современного общества.

Духовно-нравственное воспитание:

ориентация на моральные ценности и нормы в ситуациях нравственного выбора; готовность оценивать своё поведение и поступки, а также поведение и поступки других людей с позиции нравственных и правовых норм с учётом осознания последствий поступков; активное неприятие асоциальных поступков, в том числе в сети Интернет.

Гражданское воспитание:

представление о социальных нормах и правилах межличностных отношений в коллективе, в том числе в социальных сообществах; соблюдение правил безопасности, в том числе навыков

безопасного поведения в интернет-среде; готовность к разнообразной совместной деятельности при выполнении учебных, познавательных задач, создании проектов; стремление к взаимопониманию и взаимопомощи в процессе этой учебной деятельности; готовность оценивать своё поведение и поступки своих товарищей с позиции нравственных норм с учётом осознания последствий поступков.

Ценности научного познания:

сформированность мировоззренческих представлений об информации, информационных процессах и информационных технологиях, соответствующих современному уровню развития науки и общественной практики и составляющих базовую основу для понимания сущности научной картины мира;

интерес к обучению и познанию; любознательность; готовность и способность к самообразованию;

сформированность информационной культуры, в том числе навыков самостоятельной работы с разнообразными средствами информационных технологий;

Формирование культуры здоровья:

осознание ценности жизни; ответственное отношение к своему здоровью; установка на здоровый образ жизни, в том числе и за счёт освоения и соблюдения требований безопасной эксплуатации средств информационных и коммуникационных технологий (ИКТ).

Трудовое воспитание:

интерес к практическому изучению профессий и труда в сферах профессиональной деятельности, связанных с программированием и роботехникой;

Адаптация обучающегося к изменяющимся условиям социальной среды:

освоение обучающимися социального опыта, основных социальных ролей, соответствующих ведущей деятельности возраста, норм и правил общественного поведения, форм социальной жизни в группах и сообществах, в том числе существующих в виртуальном пространстве.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения образовательной программы по информатике отражают овладение универсальными учебными действиями — познавательными, коммуникативными, регулятивными.

Универсальные познавательные действия

Базовые логические действия:

умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;

самостоятельно выбирать способ решения учебной задачи (сравнивать несколько вариантов решения, выбирать наиболее подходящий с учётом самостоятельно выделенных критериев).

Базовые исследовательские действия:

формулировать вопросы, фиксирующие разрыв между реальным и желательным состоянием ситуации, объекта, и самостоятельно устанавливать искомое и данное;

оценивать на применимость и достоверность информацию, полученную в ходе исследования;

прогнозировать возможное дальнейшее развитие процессов, событий и их последствия в аналогичных или сходных ситуациях, а также выдвигать предположения об их развитии в новых условиях и контекстах.

Работа с информацией:

выявлять дефицит информации, данных, необходимых для решения поставленной задачи;

выбирать, анализировать, систематизировать и интерпретировать информацию различных видов и форм представления;

эффективно запоминать и систематизировать информацию.

Универсальные коммуникативные действия

Общение:

сопоставлять свои суждения с суждениями других участников диалога, обнаруживать различие и сходство позиций;

публично представлять результаты выполненного опыта (эксперимента, исследования, проекта);

самостоятельно выбирать формат выступления с учётом задач презентации и особенностей аудитории и в соответствии с ним составлять устные и письменные тексты с использованием иллюстративных материалов.

Совместная деятельность (сотрудничество):

понимать и использовать преимущества командной и индивидуальной работы при решении конкретной проблемы, в том числе при создании продукта;

принимать цель совместной информационной деятельности по сбору, обработке, передаче, формализации информации; коллективно строить действия по её достижению: распределять роли, договариваться, обсуждать процесс и результат совместной работы;

оценивать качество своего вклада в общий продукт по критериям, самостоятельно сформулированным участниками взаимодействия;

сравнивать результаты с исходной задачей и вклад каждого члена команды в достижение результатов, разделять сферу ответственности и проявлять готовность к предоставлению отчёта перед группой.

Универсальные регулятивные действия

Самоорганизация:

выявлять в жизненных и учебных ситуациях проблемы, требующие решения;

ориентироваться в различных подходах к принятию решений (индивидуальное принятие решений, принятие решений в группе);

составлять план действий (план реализации намеченного алгоритма решения), корректировать предложенный алгоритм с учётом получения новых знаний об изучаемом объекте;

делать выбор в условиях противоречивой информации и брать ответственность за решение.

Самоконтроль (рефлексия):

владеть способами самоконтроля, самомотивации и рефлексии;

давать адекватную оценку ситуации и предлагать план её изменения;

учитывать контекст и предвидеть трудности, которые могут возникнуть при решении задачи, адаптировать решение к меняющимся обстоятельствам;

объяснять причины достижения (недостижения) результатов деятельности, давать оценку приобретённому опыту, уметь находить позитивное в произошедшей ситуации;

вносить коррективы в деятельность на основе новых обстоятельств, изменившихся ситуаций, установленных ошибок, возникших трудностей;

оценивать соответствие результата цели и условиям.

Эмоциональный интеллект:

ставить себя на место другого человека, понимать мотивы и намерения другого.

Принятие себя и других:

осознавать невозможность контролировать всё вокруг даже в условиях открытого доступа к любым объёмам информации.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Понимание роли и места робототехники в жизни современного общества;

Знание основных сведений из истории развития робототехники в России и мире;

Знание основных понятий робототехники, основных технических терминов, связанных с процессами конструирования и программирования роботов;

Знание правил и мер безопасности при работе с электроинструментами;

Понимание общего устройства и принципа действия роботов;

Знание основных характеристик основных классов роботов;

Усвоение общей методики расчета основных кинематических схем;

Знание порядка отыскания неисправностей в различных роботизированных системах;

Усвоение методики проверки работоспособности отдельных узлов и деталей;

Знание основ популярных языков программирования;

Знание правил техники безопасности при работе в кабинете оснащенным электрооборудованием;

Понимание основных законов электрических цепей, правил безопасности при работе с электрическими цепями, основных радиоэлектронных компонент;

Понимание определения робототехнического устройства, наиболее распространенных ситуации, в которых применяются роботы;

Понимание перспектив развития робототехники, основных компонент программных сред;

Понимание основных принципов компьютерного управления, назначение и принципы работы цветового, ультразвукового датчика, датчика касания, различных исполнительных устройств;

Знание различных способов передачи механического воздействия, различных видов шасси, видов и назначений механических захватов.

<u>Формы организации образовательного процесса</u>: групповая, фронтальная, микрогруппы, индивидуальная.

<u>Формы организации и виды деятельности</u>: традиционное занятие, конкурс, соревнование, диагностическое занятие, тренировочное занятие (перед конкурсом, олимпиадой), занятие беседа с презентацией.

Тематическое планирование курса. 34 часа (1 час в неделю)

№	Тема	Содержание	Часы	дата
	Введение в	Лекция. Цели и задачи курса. Что такое		
	робототехнику	роботы. Ролики, фотографии и мультимедиа.		
	-	Рассказ о соревнованиях роботов: Евробот,		
1		фестиваль мобильных роботов, олимпиады	1	
		роботов. Спортивная робототехника. В т.ч		
		бои роботов (неразрушающие). Конструкторы		
		и «самодельные» роботы.		
	Конструкторы	Лекция. Информация о имеющихся		
2	компании ЛЕГО	конструкторах компании ЛЕГО, их	1	
2		функциональном назначении и отличии,	1	
		демонстрация имеющихся у нас наборов		
	Знакомимся с	Лекция. Знакомимся с набором Lego		
	набором Lego	Mindstorms EV3 сборки 8547. Что необходимо		
	Mindstorms EV3	знать перед началом работы с EV3. Датчики		
		конструкторов LEGO на базе компьютера EV3		
3		(Презентация), аппаратный и программный	1	
		состав конструкторов LEGO на базе		
		компьютера EV3 (Презентация), сервомотор		
		EV3.		
	Конструирование	Практика. Собираем первую модель робота		
4	первого робота	«Пятиминутка» по инструкции.	1	
	Изучение среды	Лекция. Изучение программного обеспечения,		
	управления и	изучение среды программирования,		
	программирован	управления. Краткое изучение программного		
	ия	обеспечения, изучение среды		
		программирования и управления.		
		Собираем робота "Линейный ползун":		
5		модернизируем собранного на предыдущем	1	
5		уроке робота "Пятиминутку" и получаем	1	
		"Линейного ползуна".		
		Загружаем готовые программы управления		
		роботом, тестируем их, выявляем сильные и		
		слабые стороны программ, а также		
		регулируем параметры, при которых		
		программы работают без ошибок.		
	Программирован	Практика. Разработка программ для		
6	ие робота	выполнения поставленных задачи: несколько	1	
		коротких заданий из 4-5 блоков		
	Конструируем	Создаём и тестируем "Трёхколёсного робота".		
	более сложного	У этого робота ещё нет датчиков, но уже		
7	робота	можно писать средние по сложности	1	
		программы для управления двумя		
		серводвигателями.		
8	Программирован	Практика. Разработка программ для	1	
	ие более	выполнения поставленных задачи: несколько	1	

	анажнага пабата	коротких заданий. Количество блоков в		
	сложного робота	программах более 5 штук. (более сложная		
		программа).		
		inporpamma).		
		Собираем и программируем "Бот-		
		внедорожник"		
		На предыдущем уроке мы собрали		
		"Трёхколёсного" робота. Мы его оставили в		
		ящике, на этом уроке достаём и вносим		
		небольшие изменения в конструкцию.		
		Получаем уже более серьёзная модель,		
		использующую датчик касания.		
		Соответственно, мы продолжаем		
		эксперименты по программированию робота.		
		Пишем программу средней сложности,		
		которая должна позволить роботу реагировать		
		на событие нажатия датчика.		
		Po novo unvivonivo movogi no mozorni no Son even		
		Задача примерно такая: допустим, робот ехал и упёрся в стену. Ему необходимо отъехать		
		немножко назад, повернуть налево и затем		
		продолжить движение прямо. Необходимо		
		зациклить эту программу. Провести		
		испытание поведения робота, подумать в		
		каких случаях может пригодиться полученный		
		результат.		
	Собираем	Создаём и тестируем "Гусеничного робота".		
	гусеничного	Задача: необходимо научиться собирать		
	робота по	робота на гусеницах. Поэтому тренируемся,		
	инструкции	пробуем собрать по инструкции. Если всё		
9		получилось, то управляем роботом с сотового	1	
		телефона или с компьютера. Запоминаем		
		конструкцию. Анализируем плюсы и минусы		
		конструкции. На следующем уроке попробуем		
	TC	разобрать и заново собрать робота.		
	Конструируем	На предыдущем уроке мы собирали		
	гусеничного бота	гусеничного бота. Нужно ещё раз посмотреть		
		на свои модели, запомнить конструкцию. Далее разобрать и попытаться собрать свою		
		собственную модель. Она должна быть		
10		устойчива, не должно быть выступающих	1	
		частей. Гусеницы должны быть оптимально		
		натянуты. Далее тестируем своё гусеничное		
		транспортное средство на поле, управляем им		
		с мобильного телефона или с ноутбука.		
	Тестирование	Тест должен содержать простые и чётко		
	_	сформулированные вопросы о конструкторе, о		
		лего, о законах физики, математики и т.д.		
11		Рекомендуемое количество вопросов от 10 до	1	
		20. Ученики отвечают на простые вопросы,		
		проверяют свой уровень знаний. В тест		
		рекомендуется включить несколько вопросов		

		на смекалку из цикла: "А что если". В		
		результате тестирования мы должны понять		
	C-6	научился ли чему-нибудь ученик.		
	Собираем по	Нам необходимо ознакомиться с		
	инструкции	конструкцией самого простого робота		
10	робота-сумоиста	сумоиста. Для этого читаем и собираем робота	4	
12		по инструкции: бот - сумоист. Собираем,	1	
		запоминаем конструкцию. Тестируем		
		собранного робота. Управляем им с		
		ноутбука/нетбука.		
	Соревнование	Собираем по памяти на время робота-		
	"роботов	сумоиста. Продолжительность сборки: 30-60		
13	сумоистов"	минут. Устраиваем соревнования. Не	1	
13		разбираем конструкцию робота победителя.	1	
		Необходимо изучить конструкции, выявить		
		плюсы и минусы бота.		
	Анализ	Необходимо изучить конструкции, выявить		
	конструкции	плюсы и минусы бота. Проговариваем вслух		
14	победителей	все плюсы и минусы. Свободное время.	1	
		Собираем любую со сложностью не выше 3		
		единиц из имеющихся инструкций роботов.		
15	Конструируем	Задача учеников самостоятельно найти и		
16	робота к	смастерить конструкцию робота, которая		
	международным	сможет выполнять задания олимпиады. Все		
	соревнованиям	задания расклываем по частям, например,		
	WRO (1)	нужно передвигаться из точки А в точку Б -	1	
17		это будет первая задача, нужно определять	1	
17		цвет каждой ячейки - это вторая задача, в		
		зависимости от цвета ячейки нужно		
		выкладвать определённое количество шариков		
		в ячейку - это третья задача.		
18	Разработка	Цель: Сформировать задачу на разработку		
19	проектов по	проекта группе учеников.		
20	группам.	На уроке мы делим всех учеников на группы		
		по 2-3 человека.		
		Шаг 1. Каждая группа сама придумывает себе		
		проект автоматизированного		
		устройства/установки или робота. Задача		
		учителя направить учеников на максимально		
		подробное описание будущих моделей,		
		распределить обязанности по сборке, отладке,	1	
		программированию будущей модели. Ученики		
21		обязаны описать данные решения в виде блок-		
		схем, либо текстом в тетрадях.		
		, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
		Шаг 2. При готовности описательной части		
		проекта приступить к созданию действующей		
		модели.		
		Шаг 2. При готовности описательной части		
		проекта создам действующую модели. Если		
		есть вопросы и проблемы - направляем		
		сеть вопросы и проолемы - паправляем		

		учеников на поиск самостоятельного решения проблем, выработку коллективных и индивидуальных решений.		
		Шаг 3. Уточняем параметры проекта. Дополняем его схемами, условными чертежами, добавляем описательную часть. Обновляем параметры объектов.		
		Шаг 4. При готовности модели начинаем программирование запланированных ранее функций. Цель: Научиться презентовать (представлять) свою деятельность.		
		Продолжаем сборку и программирование моделей. Шаг 5. Оформляем проект: Окончательно определяемся с названием проекта, разрабатываем презентацию для защиты проекта. Печатаем необходимое название,		
		ФИО авторов, дополнительный материал. Шаг 6. Определяемся с речью для защиты проекта. Записываем, сохраняем, репетируем. Цель: Научиться публично представлять свои изобретения.		
		Место: Актовый зал Лицея, либо лаборатория робототехники.		
		Публичная ЗАЩИТА проектов с приглашением представителей администрации Лицея, представителей градообразующего предприятия, педагогов дополнительного образования технической направленности организаций дополнительного образования города, учеников Лицея и других школ города.		
	Свободный урок. Сбор готовой модели на выбор.	Сбор и исследование одной из моделей роботов на выбор: □ Гоночная машина - автобот - автомобиль с возможностью удалённого управления и запрограммирования его для движения по цветным линиям на полу!		
22		 □ Бот с ультразвуковым датчиком - 4-х колёсный робот с интеллектуальной программой, принимающей решение куда ехать при наличии препятствия. □ Бот с датчиком касания - 4-х колёсный робот с программой, использующей датчик касания в качестве инструмента для определения препятствий. 	1	

		1 = -		
		□ Бот с датчиком для следования по линии - робот, программа которого настроена на его		
		движение по чёрной линии.		
		Бот стрелок - простейший робот,		
		стреляющий в разные стороны шариками.		
		стреляющий в разные стороны шариками.		
		Цель: Закрепить навыки конструирования по		
		готовым инструкциям. Изучить программы.		
		Ученикам необходимо собрать модели по		
		инструкции. Загрузить имеющуюся		
		программу. Изучить работу программы,		
		особенности движения, работы с датчиком и		
		т.д. модели робота. Сделать соответствующие		
		выводы.		
	Конструируем 4-	Цель: собрать по инструкции робота, изучить		
	х колёсного или	его возможности и программу.		
	гусеничного	, , , , , , , , , , , , , , , , , , ,		
	робота	Необходимо выбрать одного из 9 имеющиеся		
		конструкции МУЛЬТИБОТА		
23		Собираем робота по инструкции, загружаем	1	
		программу, изучаем его поведение: запускаем,		
		наблюдаем, тестируем. Меняем программу,		
		добиваемся изменения принципа работы		
		робота. Меняем его конструкцию.		
		processis sections are security sections.		
	Конструируем	Цель: придумать и собрать робота.		
	колёсного или	Самостоятельно запрограммировать робота.		
24	гусеничного			
	робота.	Придумываем конструкцию, которую мы бы		
		хотели собрать. Назовём конструкции		
		роботом. Пусть робот перемещается на 4-х	1	
		колёсах или гусеницах. Пусть он может короткое время (минимум 1 минуту)	1	
		передвигаться самостоятельно.		
25		передвигаться самостоятельно.		
		Начинаем сборку модели. Обсуждаем		
		подробности конструкции и параметры		
		программы.		
	Контрольное	Тест должен содержать простые и чётко		
	тестирование	сформулированные вопросы о конструкторе, о		
		лего, о законах физики, математики и т.д.		
		Рекомендуемое количество вопросов 20 штук.		
		Ученики отвечают на простые вопросы,		
26		проверяют свой уровень знаний. В тест	1	
		рекомендуется включить несколько вопросов	_	
		на смекалку из цикла: "А что если". В		
		результате тестирования мы должны понять		
		научился ли чему-нибудь ученик. Проводим		
		анализ полученных результатов. Сравниваем		
		их с теми, что были получены в начале		

		обучения по предмету "робототехника".		
		Проводим "отсев" двоечников, выбираем		
		учеников, способных изучать робототехнику		
		на повышенном уровне. Формируем из них		
		группу для обучения на второй год.		
27	Собираем	Собираем и программируем робота-богомола		
	робота-богомола	МАНТИ. Урок 1.	1	
28		Инструкция по сборке робота 'МАНТИ:	1	
		безобидный богомол'		
29	Собираем робота	Собираем робота АЛЬФАРЕКСА (ALFAREX)		
	высокой	урок 1.	1	
30	сложности	Инструкция Инструкция по сборке робота	1	
		'АЛЬФАРЕКС' для конструктора 8547.		
	Программирован	Программируем робота АЛЬФАРЕКСА,		
31	ие робота высоко	готовимся к показательным выступлениям.	1	
	сложности			
	Показательное	Показательный урок: демонстрируем робота,		
	выступление	запускаем программу, показываем		
32		возможности движения, соревнуемся на	1	
		скорость перемещения. Команда-победитель		
		получает призы.		
33	Свободное	Собираем любую по желанию модель.	2	
55	моделирование.		<i>L</i>	
ИТС)ГО:		34	

Материально-техническое обеспечение курса

Компоненты базового набора LEGO MINDSTORMS Education EV3:

- 1. Микрокомпьютер EV3.
- 2. Аккумулятор EV3.
- 3. Два больших серво мотора.
- 4. Средний серво мотор.
- 5. Ультразвуковой датчик.
- 6. Датчик цвета.
- 7. Гироскопический датчик.
- 8. Два датчика касания.
- 9. Сборочные элементы LEGO Technic (541 деталь).
- 10. Два пластиковых лотка органайзера для хранения и сортировки деталей.
- 11. Интерактивная доска.
- 12. Компьютер с программным обеспечением LEGO MINDSTORMS Education EV3.